

DESIGN APPROVAL

RICHARDSON HIGHWAY MP 351 INTERCHANGE

PROJECT NO. NFHWY00097/OA24(034)

Requested by:

Design Approval Granted:

gimblute	7/14/2021
Sarah Schacher, P.E.	Date
Preconstruction Engineer	
Northern Region	

Distribution: NR Design Directive 20-01 Distribution

RICHARDSON HIGHWAY MP 351 INTERCHANGE

PROJECT NO. NFHWY00097/OA24(034)

PREPARED BY: Erik Brunner

UNDER THE SUPERVISION OF: David K. Fischer, P.E.

ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES NORTHERN REGION DESIGN AND ENGINEERING SERVICES JULY 2021

Table of Contents

INTRODUCTION/HISTORY 3
PROJECT DESCRIPTION 4
DESIGN STANDARDS 5
DESIGN EXCEPTIONS AND DESIGN WAIVERS 5
DESIGN ALTERNATIVES 6
PREFERRED DESIGN ALTERNATIVE 6
3R ANALYSIS 6
TRAFFIC ANALYSIS 7
HORIZONTAL/VERTICAL ALIGNMENT 7
TYPICAL SECTION(S) 7
PAVEMENT DESIGN 9
PRELIMINARY BRIDGE LAYOUT. 10
RIGHT-OF-WAY REQUIREMENTS 10
MAINTENANCE CONSIDERATIONS 10
MATERIAL SOURCES 11
UTILITY RELOCATION \& COORDINATION. 11
ACCESS CONTROL FEATURES 12
PEDESTRIAN/BICYCLE (ADA) PROVISIONS 12
SAFETY IMPROVEMENTS 12
INTELLIGENT TRANSPORTATION SYSTEM FEATURES 12
DRAINAGE 12
SOIL CONDITIONS 12
EROSION AND SEDIMENT CONTROL 13
ENVIRONMENTAL COMMITMENTS 13
WORK ZONE TRAFFIC CONTROL 13
VALUE ENGINEERING 14
COST ESTIMATE 14
LOCATION MAP Figure 1
PROJECT LIMITS Figure 1
TYPICAL SECTION(S) Figure 3
DESIGN CRITERIA AND DESIGN DESIGNATION Appendix A
ENVIRONMENTAL DOCUMENT SIGNATURE PAGE Appendix B
TRAFFIC ANALYSES AND SPEED STUDIES Appendix C
PAVEMENT DESIGN Appendix D
PRELIMINARY PLAN AND PROFILE SHEETS Appendix E
HSIP NOMINATION Appendix F
PRELIMINARY BRIDGE PLANS Appendix G
VALUE ANALYSIS Appendix H
PRELIMINARY ROW PLANS Appendix I

INTRODUCTION/HISTORY

The State of Alaska Department of Transportation \& Public Facilities (DOT\&PF) in cooperation with the Federal Highway Administration (FHWA) is proposing to improve access and safety of users of the Richardson Highway at the milepost 351 intersection with the Old Richardson. This section of the Richardson Highway was constructed in 1970 under the Fairbanks to Eielson A.F.B Section II F.-F.G.-4(20) project. That historic realignment and conversion to a four lane separated facility left remnant portions of the Old Richardson alignment with at-grade access points to the Richardson Highway.

The project is located within a four-lane, high-speed section of the Richardson Highway near milepost 351, on the Interstate Highway System. The objective of this project is to improve safety and functionality. This will be accomplished by constructing a grade separated crossing at milepost 351, a new access road on the south side of the Richardson Highway between Keeney Road and the extension of the Old Richardson. This will maintain access after the closure of the existing Keeney Road at grade intersection with the Richardson Highway.

Two existing Richardson Highway at-grade access points will be closed and one new grade separated access point will be constructed.

Figure 1.

PROJECT DESCRIPTION

The Richardson Highway is a four-lane divided facility oriented generally east-west. It is the only direct route between Fairbanks and Delta Junction, terminus of the Alaska Highway. The Richardson Highway at this location is on the Interstate Highway System.

The Richardson Highway is posted at 60 mph between Fairbanks and North Pole, with an operating speed of $60-65 \mathrm{mph}$. Due to the high speed nature of the facility, when crashes occur they have the potential to be severe. Between 2008 and 2014 there were 32 multi-vehicle crashes with one fatality, making it eligible for the Highway Safety Improvement Program (HSIP). In addition, there is heavy truck traffic at the intersection, often large double tractor-trailers. The high speeds and volumes make it very difficult for these trucks to safely cross two lanes of eastbound traffic and merge to head west toward Fairbanks.

The project will construct grade-separated access between the Richardson Highway and the Old Richardson Highway. Grade separation will be accomplished by elevating the eastbound lanes of the Richardson Highway, with westbound turning movements passing beneath. Conventional diagonal ramps will carry eastbound turning movements.

To address access considerations, the existing at grade intersection of Keeney Road and Richardson Highway will be closed. A connector between Keeney and the Old Richardson and the new overpass will be constructed.

Figure 2.

DESIGN STANDARDS

The Design Criteria for this project are included in Appendix B. The project will be developed in accordance with the following standards:

Agency	Standard
DOT\&PF	- Highway Preconstruction Manual (PCM) - Applicable Chief Engineer's Directives - Alaska Sign Design Specifications (ASDS) - Alaska Highway Flexible Pavement Design Manual (AKFPD) - Alaska Highway Drainage Manual - FHWA Hydraulic Engineering Circular No. 22, Third Edition - Alaska Traffic Manual, 2016 (ATM) - Standard Specifications for Highway Construction, 2020 - Alaska Bridges and Structures Manual (ABSM)
AASHTO	- A Policy on Geometric Design of Highways and Streets, 2011 (Green Book) - Guide Specifications for LRFD Seismic Bridge Design (2011) - Highway Capacity Manual (HCM) - Informational Guide for Highway Lighting, 1984 (IGRL) - LRFD Bridge Design Specifications (2020) - Roadside Design Guide, 2011 - Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals, 1994
ANSI	- Design of Roadway Facility Lighting (RP-8-14)

DESIGN EXCEPTIONS AND DESIGN WAIVERS

There are no design exceptions or design waivers for this project.

DESIGN ALTERNATIVES

An Interchange Access Justification Report was completed for this project as required by FHWA in July of 2018. Several design alternatives were investigated:

- Median closure at the intersection of the Old Richardson and Richardson highway.
- Partial interchange elevating the eastbound mainline of the Richardson highway eliminating its conflict with the Old Richardson highway
- Partial interchange with a southwesterly shift requiring additional right of way acquisition compared to the preferred alternative.
- Partial interchange at MP351.75 and a full interchange at MP 351.75 both require significant additional right-of way-acquisition and additional frontage road construction not within the scope of the project HSIP nomination.

A value analysis was also conducted (December 2017) as part of this effort with members of the Fairbanks North Star Borough, City of North Pole, FAST Planning and DOT\&PF. The preferred alternative was selected as the best value.

PREFERRED DESIGN ALTERNATIVE

The preferred alternative is to shift approximately 15 feet north and elevate the eastbound lanes of the Richardson Highway, shift the westbound lanes north within the existing toes of slopes, construct new frontage south of the Richardson Highway, and construct on and off ramps utilizing existing acquired rights of way. This alternative minimizes right-of-way impacts and the acquisition of new right-of-way compared to the other interchange alternatives.

Approximately 6,400 feet of the eastbound Richardson Highway will be reconstructed including the overpass. Approximately 5,800 feet of the westbound Richardson highway will be reconstructed and shifted slightly while maintaining the existing roadway prism toe between the Alaska Railroad and the highway at its closest point.

The existing west-bound left turn lane will be replaced with a deceleration and turn lane and a westbound acceleration lane will be constructed as well.

A new 800 foot long connector roadway will connect Keeney road to the Old Richardson Highway as the at-grade intersection of Keeney Road and the Richardson Highway is being removed.

The preferred alternative does not preclude the eventual construction of a full interchange should future development on the north side of the Richardson Highway warrant it. However, such a consideration would require the Alaska Railroad realign and vacate their existing right-of-way.

3R ANALYSIS

Not applicable. This is a reconstruction project.

TRAFFIC ANALYSIS

The Design Designation's projected traffic volumes substantiates that the design alignments, design speed and typical sections are adequate to accommodate future traffic capacity. Between 2008 and 2012 there were 32 multi-vehicle crashes with one fatality associated with the Old Richardson and Richardson intersection. Two of the multi vehicle crashes were head on, five were side swipe, nine were rear end and 16 were angle. 29 were property damage only and 14 were injury accidents. This interchange will mitigate all injury and fatal crashes associated with this intersection.

Kittleson and Associates, Inc conducted intersection operational analysis indicating that all intersection will operate a level of service of C or better through 2040 and all merge diverge location are projected to operate acceptably. The analyses were prepared following Highway Capacity Manual 2000 procedures using Synchro 9 and Highway Capacity Software (HCS) 7 traffic analysis software.

HORIZONTAL/VERTICAL ALIGNMENT

All horizontal and vertical curves for the new Richardson Highway alignment meet the requirements for the 70 MPH design speed and the all horizontal and vertical curves for the new connector from the Keeney road alignment meet the requirements for the 40 MPH design speed.

The horizontal alignment of the westbound Richardson Highway will be shifted slightly to the north. The presence of the Alaska Railroad at this location means that the existing northern toe of the Richardson Highway fill is already at a minimum distance from the line and controls the amount the roadway can be shifted. The eastbound centerline will be shifted approximately 13 feet north of the existing centerline at the new bridge midpoint. The bridge structure will be in a horizontal tangent beyond any superelevation transition of the 5000 foot and 2040 foot radius curves used to shift the alignment and then transition it back to the existing alignment.

The vertical alignment of the eastbound Richardson Highway will be elevated to provide vertical clearance for the westbound turning movements passing below. The grades of the new profile are between $+2.7 \%$ and -2.5%

TYPICAL SECTION(S)

The typical sections were developed in accordance with the PCM, Green Book, and evaluation of area as-builts and assumptions about ground conditions in the area. Typical Sections will be refined in more detailed design once geotechnical investigations and recommendations are complete.

A 2-inch Asphalt Concrete Pavement layer over 3-inch Asphalt Treated Base over 8 inches of Subbase Grading "F" and Select Material Type A will be used for the structural section. Select Material will be used for additional fill material as needed. The pavement section is discussed in detail in Section 20, Pavement Design.

The connector road will have two 12 foot-wide lanes and 3-foot-wide paved shoulders to match recently constructed frontage roads in the Richardson MP 353-357 area.

TYPICAL SECTION
RICHARDSON HIGHWAY
DIRECTIONAL LANE PAIR
Figure 3a.

TYPICAL SECTION-ELEVATED
 RICHARDSON HIGHWAY
 EASTBOUND LANES

Figure 3b.

TYPICAL SECTION
ON AND OFF RAMP

Figure 3c.

TYPICAL SECTION

CONNECTOR ROAD

Figure 3d.

PAVEMENT DESIGN

The selected pavement design was generated using the Alaska Flexible Pavement Manual and associated software. The design life of the pavement is 15 years. The pavement design was analyzed using the mechanistic design method. Design calculations and design approval is documented in Appendix E.

Any modification to this pavement design will be based off of the pending geotechnical report and recommendation from the Regional Geotechnical Engineer.

PRELIMINARY BRIDGE LAYOUT

A single span concrete girder bridge founded on spread footings is anticipated. Preliminary bridge plans are available in Appendix F. Bridge clearance will be maximized to the extent practical and 18 ' clearance is the design goal.

RIGHT-OF-WAY REQUIREMENTS

Several additional right of way acquisitions will be necessary to complete this project, as summarized in the table below. No residential or business relocations are anticipated to be necessary. Temporary Construction Permits will be obtained for driveway reconstruction. See appendix I for preliminary ROW plans.

Legal	Lot Size (SF)	Proposed Acquisition (SF)	Rema	Reason
TL-519	348,480	206,644	141,836	Connector, off ramp
TL-532	146,971	146,971	0	Old Rich extension. underpass
TL-624	38,239	38,239	0	Keeney access construction

Table 1.

MAINTENANCE CONSIDERATIONS

DOT\&PF owns and maintains the Richardson Highway and Old Richardson Highway at this location. The project will replace and install additional luminaires, signs, striping and a new bridge, but these features should not need additional maintenance work for many years. DOT\&PF Maintenance \& Operations will incur additional utility costs for lighting and will have a change in operations associated with snow removal of new bridge deck (taking care not to throw snow to below roadway). Snow removal at bridges requires M\&O to more promptly remove snow stacked on the bridge decks against rails in order to eliminate lane width constraints and possible ramping caused by snow build up. It is estimated this additional effort would occur every 1-3 snow events with an average of 24 two-inch or greater snow accumulative events per year. They will also have additional lane miles associated with auxiliary lanes and ramps. For winter operations, Fairbanks M\&O believes the proposed design does not impose significant alterations to their Priority 1 plow route and propose it will be handled in the same manner the Badger/6 mile, Dawson, and Eielson AFB interchanges are plowed. Detailed design will involve coordination with M\&O personnel to minimize impacts to their operations and where possible, construct features that ease maintenance efforts.
Approximately 1.1 new lane miles of ramp and auxiliary lanes will be added in this project.

FNSB will be responsible for maintenance of the newly constructed, 800 foot 2-lane connection between Keeney Road and the intersection with the extension of the Old Richardson highway. Coordination with FNSB and the Keeney Service Area will be ongoing through detailed design. FNSB will also be consulted on preferred naming conventions of this road as re-alignments of old roads or new connector roads need clear names established for emergency services response.

Figure 4.

MATERIAL SOURCES

All material sources will be contractor-furnished. Materials of appropriate quality are available in sufficient quantity from private and commercial sources in the project vicinity.

UTILITY RELOCATION \& COORDINATION

There are numerous utilities within the corridor limits, both crossing and paralleling the
Richardson Highway and Frontage Roads. These utilities include:

- Golden Valley Electric Association (GVEA): Electric power
- Alaska Communications Systems (ACS): Telephone and fiber optics
- General Communications Inc. (GCI): Fiber optics and cable TV
- AT\&T /Alascom (AT\&T): Telephone and fiber optics
- City of North Pole water distribution
- Alaska Railroad Corporation (ARRC)

Overhead and underground power and communication will likely be completed in advance of construction by the utility companies. Water relocation will likely be included in PH4 construction.

ACCESS CONTROL FEATURES

The Richardson Highway is an access controlled facility and the Right of Way plans show the legal access points. This project will modify breaks in the access control line and the modifications will be documented in the Right of Way mapping process, in consultation with FHWA.

This project will close the access point at Keeney Road due to conflicts with the interchange offramp to Old Richardson Highway. The access control fence will be extended at the closed intersections. The access points at the Old Richardson will be revised with the new interchange.

PEDESTRIAN/BICYCLE (ADA) PROVISIONS

There are no specific pedestrian, bicycle or ADA features. The shoulders of the Richardson Highway will continue to accommodate bicyclists, Old Richardson Highway and Keeney Road Connector will accommodate pedestrians and bicycles.

SAFETY IMPROVEMENTS

The following features will increase safety in the project area:

- Consolidation and removal of at grade access points, and removal of left turns across eastbound traffic through grade-separation. This will result in a reduction in crossing maneuvers across multiple lanes of high speed traffic, reducing likelihood and severity of crashes.
- Construction of on and off ramps associated with the interchange will allow safer exiting and entering of the Richardson Highway.

INTELLIGENT TRANSPORTATION SYSTEM FEATURES

Not applicable. There are no intelligent transportation system features within the project limits.

DRAINAGE

The project area is relatively flat and historical precipitation is generally low. Existing drainage swales infiltrate runoff.

SOIL CONDITIONS

The soils investigation and structural foundation exploration are both pending. Specific recommendations will be presented in the Geotechnical Report and Foundations Report. In general historic bores in the area show 2-6 feet of silty sand over sand and gravel.

EROSION AND SEDIMENT CONTROL

In accordance with the Alaska Pollutant Discharge Elimination System (APDES) General Permit for Alaska, an Erosion and Sediment Control Plan (ESCP) will be provided in the contract plan set. The contractor must submit the SWPPP before construction begins.

The area of disturbed ground is estimated to be 34 acres. The project area is largely developed through existing highway or frontage road system.

The fill slopes being constructed are the major potential erosion features. Embankment slopes will not be constructed steeper than 1.5:1. All slopes will be seeded to provide permanent erosion protection.
Construction features that will require temporary or permanent erosion and sediment control measures include, but are not limited to:

- Detours and new alignments
- Staging areas
- Embankment slopes abutting wetlands
- Disturbed areas around culvert inlets and outlets
- Disturbed roadside ditches draining from the construction site
- Stockpiles including, topsoil piles, spoil piles, and excess soil piles
- Cut/Fill slopes

Best management practices would be implemented during construction to minimize detachment and transport of sediment beyond the construction site. As necessary, in compliance with the APDES General Permit for Construction Activities, the construction contractor would issue a Notice of Intent to the ADEC for storm water discharges associated with construction activities and, before construction, a SWPPP, if needed, would be completed for ADEC review.

ENVIRONMENTAL COMMITMENTS

There are no environmental commitments and mitigation measures required that are unique to this project.

WORK ZONE TRAFFIC CONTROL

This project is not considered significant for traffic control per the Department's Policy and Procedure 05.05.015. The Richardson Highway is an Interstate, but the project is not in a Transportation Management Area; the AADT is less than $30,000 \mathrm{vpd}$, and work is not expected to fully close the highway for more than one hour at a time.

The Contractor will be required to develop an approved temporary traffic control plan. The plan will be developed to provide safety to motorists, bicyclists, pedestrians, workers and emergency vehicles as they pass through the work zone. The plan will identify and provide adequate warning, delineation and channelization to assist in guiding road users through the work zone. It is anticipated that this project will be constructed in a single season, with concurrent construction of connector roads and the bridge with all Richardson traffic shifted to the current east bound
lanes via cross overs. Out of direction travel will be required for some movements while the new interchange is constructed.

VALUE ENGINEERING

This project is not projected to meet the total project cost threshold requirement for Value Engineering and as such a VE study will not be conducted.

COST ESTIMATE

The estimated costs for this project are as follows:

Design	$\$ 1,545,000.00$
Utilities	$\$ 700,000.00$
Right of Way	$\$ 500,000.00$
Construction (Includes 15% Engineering)	$\$ 19,850,000.000$
Total Cost of Project	$\$ 22,595,000.00$

APPENDIX A

> DESIGN CRITERIA
> AND
> DESIGN DESIGNATION

ALASKA DOT\&PF RECONSTRUCTION MANUAL
 Chapter 11 - Design PROJECT DESIGN CRITERIA

Proposed - Designer/Consultant:
Endorsed - Engineering Manager:
Approved - Preconstruction Engineer:

Date: 07/08/2021
Date: 7/8/2021
Date: 7/9/2021

Shaded criteria are commonly referred to as the FWHA 13 controlling criteria. For NHS routes only, these criteria must meet the minimums established in the Green Book (AASHTO A Policy on Geometric Design of Highways and Streets). For all other routes, these criteria must meet the minimums established in the Alaska Highway Preconstruction Manual. Otherwise a Design Exception must be approved.

Design Criteria marked with a " \#" do not meet minimums and must have a Design Exceptions) and/or Design Waivers) approved. See the Design Study Report for Design Exception/Design Waiver approval(s) and approved design criteria values.

ALASKA DOT\&PF RECONSTRUCTION MANUAL
 Chapter 11 - Design PROJECT DESIGN CRITERIA

Proposed - Designer/Consultant:
Endorsed - Engineering Manager:
Approved - Preconstruction Engineer:

Date: 07/08/2021
Date: 7/8/2021

Date: \qquad

Shaded criteria are commonly referred to as the FWHA 13 controlling criteria. For NHS routes only, these criteria must meet the minimums established in the Green Book (AASHTO A Policy on Geometric Design of Highways and Streets). For all other routes, these criteria must meet the minimums established in the Alaska Highway Preconstruction Manual. Otherwise a Design Exception must be approved.

Design Criteria marked with a " \#" do not meet minimums and must have a Design Exceptions) and/or Design Waivers) approved. See the Design Study Report for Design Exception/Design Waiver approval(s) and approved design criteria values.

TO: Sarah E. Schacher, P.E., Preconstruction Engineer

Northern Region

FROM: Scott Vockeroth
Traffic Data Manager
Fairbanks Field Office

DATE: July 8, 2020
FILE NO: I:\Traffic
DatalDesign $2020 \backslash$ RichHwyMP351_NFHWY00097
TELEPHONE 451-5150
NO:
SUBJECT: Richardson Highway MP 351 Interchange
NFHWY00097/OA24(034)
Design Designation Request

Please approve the attached design designation by signing the endorsement below which enables your staff to proceed.

Contact our office if you have any questions.

7/13/2020
Sarah E. Schacher, P.E., Preconstruction Engineer
Date
cc: Erik Brunner, P.E., Engineer, Northern Region
Dave Fischer, P.E., Engineer, Northern Region

Attachment

DESIGN DESIGNATION

Northern Region Planning

Traffic Data \& Forecasting

ROUTE NAME:	Richardson Highway
CDS NO:	190000
ROUTE ID:	11000001000
MILEPOINT:	$351.5-352.5$
FUNCTIONAL CLASS:	Interstate
URBAN/RURAL:	Urban

	YEAR	AADT	\%	
AADT	2019	15500		
	2035	18900		
DHV	2045	21400	12.60	2400
	2035		2700	
D			$35-65$	
		4.85	Total	
T		0.10	Class 4	
		1.05	Class 5	
		1.00	Class 6	
		1.50	Class 8	
		0.40	Class 9	
		0.65	Class 10	
		0.15	Class 13	
ESAL'S	To Be Provided			
(Design	by Design			
Lane)				

Submitted Data Request Type: Design Designations Request (Northern)				
Latest Status Update:			Data Request Record has been assigned to an email address.	
Assigned to the following e-mail address:			jill.melcher@alaska.gov; scott.vockeroth@alaska.gov	
Record Creation:			July 02, 2020 08:14:58 AM	
Routed to assigned e-mail address:			July 02, 2020 02:41:35 PM	
Request Resolution:			Resolution Pending	
Requestor				
	First Name: * Erik		Last Name: *	Brunner
	Email: * erik.b	erik.brunner@alaska.gov		
	Additional Email dave. Contacts:	dave.fischer@alasak.gov		+
	Date Needed: $07 / 10$ / 1 (AKST)	07/10/2020		\otimes
Project Information				
	Project Name: * Richar	Richardson Highway Milepost 351 Interchange		
	Project Engineer(s): * \quad Erik B	Erik Brunner; Dave Fischer		$+$
	State Project NFHW Number: *	NFHWY00097		
	Federal Project OA24 Number: *	OA24(034)		
	Route ID: * 19000	190000		
	Milepoint (To/From): *$\quad 351.5$	$351.5 \text { to } 352.5$		
	$\begin{aligned} & \text { Construction Year: } \\ & \text { * } \end{aligned}$	2023		
Please select the type of project. *				
Reconstruction				
Rehabilitation				
- New Construction				
Other (please describe): New Construction				
Project Notes:				
This project will construct an interchange similar to the Eielson single sided for east/south bound traffic and build a new frontage road from Sand Lot Court to the existing "frontage" road that starts at the church and upgrade the existing frontage to tie into the revised Old Richardson alignment				

Please select the project's region to view the Data Fields that are available to request. ${ }^{*}$
Central
Northern

| Data Fields Requested: (please pick at least one) * |
| :--- | :--- |
| Present AADT
 Design Year AADT (Please specify Year) 2045
 Mid-Design Year AADT (Please specify Year) 2035
 Design Hourly Volume (DHV)
 Directional Split (D)
 Percent Trucks
 Road Functional Classification
 Intersection Turning Movements (Please specify Locations) |

Traffic Data Request Form				TDR Form-1-10/20/03
Requested By:	Erik Brunner		Design Project Number: NFHWY00097	Date Requested: 7/2/20
Base Year: 2019Base Year Total AADT:AADT Growth Rate Forward (\%/yr): 1.25 End Year: 2045 Back Cast (\%/yr): Begin Year:			Common Route Name: Richardson Hwy Functional Class: Urban/Rural Interstate Historic M.P. Interval:	CDS Route Name: CDS-190000 Route: 1100000I000 CDS M.P. Interval: 351.5-352.5
Truck Category	Load Factor (ESALs per Truck)	\% of Total AADT in Truck Category	Lane Configuration Sketch: (Designer: Provide sketch of lane layout. Number each lane and show directions.) Indicate North	
2-axle See attached				
3-axle				
5-axle				
≥ 6-axle				
Percent of Base Year Total AADT for Each Numbered Lane in Configuration Sketch:			Comments:	
Lane \# 1	\% 35-Eastbound			
$\begin{array}{\|l\|} \hline \text { Lane \# } 2 \\ \hline \text { Lane \# } \end{array}$	\% 65-Westbound			
	\%			
Lane \#	\%			
Lane \#	\%			
Lane \#	\%			
Data Provided By: Scott Vockeroth		Provider's Signature:		Date Provided: 7/8/2020

Figure 6-1. Traffic Data Request (TDR) Form 11000001000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway) 1100000000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway) 11000000000 Richardson Highway (Richardson Highway)
1100000000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway)
11000001000 Richardson Highway (Richardson Highway) 11000000000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway) 1100000000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway) 11000000000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway) 1100000000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway) 11000000000 Richardson Highway (Richardson Highway) 11000001000 Richardson Highway (Richardson Highway)

350 FHWA Urban Area Beg

350 Functional Class
350 NHS
350 Traffic Lin
350,2079497 Intersection 550.2829699 Intersections 350.7083685 Intersection 350.9982125 Bridge 351.0076605 Intersections 351.0215021 Bridge
351.2887573 Intersections
351.2918758 Traffic Link
351.2918758 Traffic Link
351.8890504 Intersections 352.7142707 Intersections 352.7173892 Traffic Link 352.7173892 Traffic Lin
\qquad 353 FHWA Urban Area 353 Functional Class

353 NHS

353 Traffic Link
353
363.6531171

Urbanized Area Type: Urbanized Area
Functional Class: Interstate
functional Class: Interstate
AADT: 13244
Intersection Name: Richardson Highway \& Richardson NB Off-Ramp (Mission) 1 Intersection Name: Richardson Highway \& Richardson NB On-Ramp (Mission) 1 Intersection Name: Richardson Highway \& Richardson NB Off-Ramp (Badger) Bridge Name: BADGER LOOP ROAD UNDERCROSSING
intersection Name: Richardson Highway \& Badger Road 2 Bridge Name: BADGER LOOP ROAD UNDERCROSSING
intersection Name: Richardson Highway \& Richardson NB On-Ramp (Badger) AADT: 13244
AADT: 14673
ntersection Name: Richardson Highway \& Peridot Street 1
Intersection Name: Richardson Highway \& Old Rich @ North Pole 1 AADT: 14673
AADT: 19173
Urbanized Area Type: Urbanized Area
functional Class: Interstate
HS: NHS Not Intermodal
AADT: 19173

Jrbanized Area Name: Fairbanks

Traffic Link ID: AL200076

Bridge Number: 176
NBI: Yes
Bridge Number: 1767
NBI: Ye

Traffic Link ID: AL200076 Traffic Link ID: AL001292

Traffic Link ID: ALO01292
Traffic Link ID: AL001293
Urbanized Area Name: Fairbanks
raffic Link ID: AL001293

Computations and Historical Data

Project: Richardson Hwy Milepost 351 Interchange

Historical AADTs

Class Data

Station ID	Station Description	MP	Year	4	Percent by Class						Total Truck \%
					5	6	8	9	10	13	
13420514	Richardson Hwy at MP 359	329	2019	0.10	1.05	1.00	1.50	0.40	0.65	0.15	4.85
		Load Fa	or	1.00	0.50	0.85	1.20	1.55	2.24	2.24	
		Number	Axles	2/3	2	3	4	5	6	7+	

APPENDIX B

ENVIRONMENTAL DOCUMENT

 (signature page only)VII. Environmental Documentation Approval Signatures

Prepared by:

Date:

Kerri L. Martin
[Print Name] Environmental Impact Analyst

Reviewed by:

Date:

Lauren Little, P.E.
[Print Name] Engineering Manager

Programmatic CE

Approved by:
Date:
[Signature] Regional Environmental Manager
[Print Name] Regional Environmental Manager

Non-Programmatic CE

Approval
Recommended by: \qquad Date:
$8-13 \cdot 19$
[Signature] Regional Environmental Manager
Brett Nelson
[Print Name] Regional Environmental Manager

Approved by:

Date:
[Signature] NEPA Program Manager

[Print Name] NEPA Program Manager

APPENDIX C

TRAFFIC ANALYSIS AND SPEED STUDIES

 (cover pages only)Interc hange Access J ustific ation Report

HSP: Pichardson Highway MP 351 Interchange Project

Project No. NFWYO0097/0A24034

Fairbanks North Sta r Borough, Alaska

Prepared For.
Alaska Department of Transportation and Public Facilities
2301 Peger Road
Fairbanks, AK 99709

Prepared By:
Kttelson \& Associates, Inc.
851 SW $6^{\text {th }}$ Avenue, Suite 600
Portland, OR 97205
(503) 228-5230

Project Analyst Bryan Graveline
Project Designer: Damen Hippenstiel, PE $=$ ProjectManager Kelly Laustsen Project Pincipal: Marc Butorac, P.T.O.E.

July 2018

IACR FILE LOCATION:
॥dotfpgnas\Precon\Projects\Rich Hwy\90097 Rich 351 Int\IACR\00097 IACR Final signed.pdf

RICHARDSON HIGHWAY MP 351 INTERCHANGE

Traffic Noise Analysis

Federal Project Number: OA24304
State Project Number: NFHWY00097

Prepared for:
State of Alaska Department of Transportation and Public Facilities, Northern Region, Division of Design and Engineering Services
2301 Peger Road,
Fairbanks, AK 99709

Prepared by:

DOWL
4041 B Street
Anchorage, Alaska 99503
(907) 562-2000
W.O. 1124.50126.01

August 2019
1524.50126 .01

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by the State of Alaska

Department of Transportation and Public Facilities pursuant to 23 U.S.C. 327 and a
Memorandum of Understanding dated November 3, 2017, and executed by the Federal
Highway Administration and the State of Alaska Department of Transportation and Public Facilities.

Noise analysis location:
 HWY000097\%20Traffic\%20Noise\%20Analysis\%20Report Final\%208-2-19.pdf

TECHNICAL MEMORANDUM \#3
 Richardson Highway MP 351 Preferred Alternative Build Operations and Safety Assessment

Date: \quad March 12, 2018
Project \#: 20218
To: Lauren Little, PE, Alaska Department of Transportation and Public Facilities
Michael Cain, PE, Federal Highway Administration
Bryan Graveline; Kelly Laustsen, PE; \& Marc Butorac, PE, PTOE

This memorandum documents the preferred alternative build operations and safety assessment conducted as part of the Interchange Access Change Request (IACR) for the Richardson Highway Milepost 351 (Old Richardson Highway) intersection. The list of interim deliverables for the IACR includes:

- Technical Memorandum \#1: Operational and Crash Analysis (Reference 1, dated August 2017)
- Technical Memorandum \#2A: Concept Development and Initial Evaluation (Reference 2, dated November 2017)
- Technical Memorandum \#2B: Alternative Operations, Staging, Right-of-Way Considerations and Cost Estimates (Reference 3, dated December 2017)
- Technical Memorandum \#3: Preferred Alternative Build Operations and Safety Assessment

The incremental memoranda are being provided to allow the respective agencies an opportunity to review and comment on the transportation analysis and alternatives as they are prepared according to the Methods and Assumptions Memorandum dated June 2017 (Reference 4).

This memorandum documents the analysis performed on the preferred alternative as recommended at the Value Analysis workshop conducted at DOT\&PF Fairbanks offices from December 19 through $21^{\text {st }}, 2017$. At this workshop, Alternative 2A (described in the "Preferred Alternative" section) was determined to be the most feasible option and was recommended to be moved forward for further analysis.

This memorandum includes a safety assessment, operational analysis, and conceptual design documentation for the preferred alternative. The report documenting the Value Analysis workshop is provided in Appendix A.

Tech Memo:\Consultant KA\Deliverables\TechMemo3\20218 Tech Memo 3 final.pdf

APPENDIX D

PAVEMENT DESIGN

OK-Jeff Currey, P.E.
NR Mat'ls Engr 10-8-20

APPENDIX E

PRELIMINARY PLAN AND PROFILE SHEETS

APPENDIX F

HSIP NOMINATION

STATE OF ALASKA
 DEPARTMENT OF TRANSPORTATION \& PUBLIC FACILITIES Northern Region Traffic \& Safety Section

FFY16 Highway Safety Improvement Program Candidate Projects
Project Description and Cost Estimate

Candidate Project Name:

16NR04 Richardson Highway Milepost 351 Interchange

Candidate Project Location:

This project is located at the intersection of the Richardson Highway and the Old Rich at North Pole, near Milepost 351 of the Richardson Highway. The area around this intersection is known locally as 12-Mile Village. The CDS information for this intersection is:

	Richardson Highway	Old Rich @ North Pole
CDS Route	190000	188200
Milepoint at intersection	352.6256	4.9055

Figure 1. Project Location

Safety Problem Description:

The Richardson Highway is posted at 55 mph between Fairbanks and North Pole, with an operating speed between 60-65 mph, so potential for greater severity crashes is high. A speed limit increase is being considered. Due to the high speed of the roadway, crashes have the potential to be severe when they do occur. It should be noted that there are no signalized intersections on the

Richardson Highway (aside from the terminus at Airport Way). This intersection, like other major at grade intersections in the area has deceleration and acceleration lanes and is illuminated. Other area intersections, such as Badger Road were converted to interchanges over the past 15 years.

There were 24 multi-vehicle crashes at this intersection from 2008-2012, including 8 minor injury crashes and 1 fatal crash.

This intersection has a crash rate of 1.18 as compared to a statewide average of 0.47 for similar intersections, and a safety index of 1.71.

Proposed Mitigation:

To minimize the potential for multi-vehicle injury and fatal crashes, the proposed project would replace the existing intersection with an interchange. Due to the proximity of the ARRC tracks and the need to provide access only to the south side of the highway, design is anticipated to be similar to the "partial interchange" at the Eielson AFB entrance near Milepost 342 of the Richardson Highway. However, actual design of the interchange will be vetted through the design process.

Conformance with the Strategic Highway Safety Plan:

This project aligns with Action 2.5 of Strategy 2 (Implement infrastructure projects to address intersection crashes) of the Roadways Emphasis Area of the Strategic Highway Safety Plan.

Benefit/Cost Ratio:

On 4/27/15, HQ Traffic and Safety and NR Traffic and Safety agreed to the use of a CRF of 57% applied to injury crashes as found on the CMF Clearinghouse, (Elvik, R. and Erke, A., "Revision of the Hand Book of Road Safety Measures: Grade-separated junctions." (3-27-2007)) for the project nomination. The countermeasure "Convert at-grade intersection into grade-separated interchange" best fits the circumstances compared with other countermeasures and this CRF was one of only two countermeasures in the grouping to be given a five-star rating.

This project has a predicted benefit cost ratio of $0.22: 1$.
Cost Estimate:

Preliminary Engineering (Phase 2):	$\$ 1,545,000$	FFY 16
Right of Way (Phase 3):	$\$ 500,000$	FFY 18
Utilities (Phase 7):	$\$ 700,000$	FFY 18
Construction (Phase 4):	$\$ 19,150,000$	FFY 20

HQ Reporting Information

	Richardson Highway	Old Rich @ North Pole
CDS Route	190000	188200
Milepoint at intersection	352.6256	4.9055
Ownership	100% State; 0% Local	100% State; 0\% Local
Speed Limit	55 mph	40 mph
Functional Class	Interstate	Major Collector
2013 ADT	14549	2329

Attachments
Project Ranking Worksheet
Construction Cost Estimate
Crash Data

FFY16 Highway Safety Improvement Program Construction Cost Estimate					
16NR04: Richardson Highway MP 351 Interchange					
6/29/2015					
Work	Quantity	Unit	Unit Cost	Total Cost	Remarks
REMOVALS					
Unclassified Excavation	22,222	CY	\$9.00	\$199,998.00	
Remove Existing Pavement	31,250	SY	\$4.00	\$125,000.00	
Installation					
Borrow Type "A"	1,000,000	TON	\$9.25	\$9,250,000.00	
Aggregate Base Course		TON	\$25.00	\$0.00	
Asphalt Treated Base (ATB)	6,008	TON	\$40.00	\$240,320.00	
Asphalt Cement for ATB	270	TON	\$650.00	\$175,500.00	
Asphalt Concrete	4,006	TON	\$55.00	\$220,330.00	
Asphalt Cement	270	TON	\$750.00	\$202,500.00	
Ramp Modifications		LS	\$70.00	\$0.00	
Intersection Improvements		LS	All Req'd	\$0.00	
Install Rumble Strips		mı	\$3,000.00	\$0.00	
Sidewalk / Pathway		SY	\$60.00	\$0.00	
Curb \& Gutter		LF	\$30.00	\$0.00	
Bridge	4,920	SF	\$350.00	\$1,722,000.00	
Culverts	575	LF	\$110.00	\$63,250.00	
Guardrail End Treatments	4	EA	\$4,500.00	\$18,000.00	
Guardrail	4,250	LF	\$35.00	\$148,750.00	
TRAFFIC CONTROL DEVICES					
Relocated Electroliers		EA	\$5,000.00	\$0.00	
New Electroliers	15	EA	\$15,000.00	\$225,000.00	
New Load Center	2	EA	\$7,000.00	\$14,000.00	
Modify Existing Load Center		EA	\$3,000.00	\$0.00	
New Controller/Foundation		EA	\$25,000.00	\$0.00	
Relocate Traffic Structure Support		EA	\$50,000.00	\$0.00	
New Junction Boxes		EA	\$500.00	\$0.00	
Loop Detectors		EA	\$750.00	\$0.00	
New Traffic Signal Wiring		LS	All Req'd	\$0.00	
New Signal Pole, Heads, Signs		EA	\$70,000.00	\$0.00	
Concrete Foundations		EA	\$200.00	\$0.00	
Sign Panels (installed no post)		SF	\$25.00	\$0.00	
2"x2" PST Sign Posts		EA	\$100.00	\$0.00	
2.5 " $2.5 \mathrm{5} \mathrm{\prime}$ PST Sign Posts	100	EA	\$100.00	\$10,000.00	
3" Pipe Posts/foundations		EA	\$1,250.00	\$0.00	
W 6x9 Posts/foundations		EA	\$3,000.00	\$0.00	
Striping Methyl		LS	\$100,000.00	\$100,000.00	
SUBTOTAL			Subtotal	\$14,113,259.28	Plus 11\% Incidentals
OTHER					
Erosion/Pollution Control		Ls	All Req'd	\$80,000.00	
Field Office		LS	All Req'd	\$50,000.00	
Traffic Maintenance		LS	All Req'd	\$900,000.00	includes temp crossover
Construction Survey		LS	All Req'd	\$125,000.00	
Mobilization/Demobilization		LS	All Req'd	\$465,000.00	
CONSTRUCTION CONTRACT COST			Subtotal	\$15,890,591.87	Plus 1\% contingency
UTILITIES					
Utility Preliminary Design		Ls	All Req'd	\$0.00	
Underground Telephone Relocate		Ls	All Req'd	\$0.00	
Electric Relocate		LS	All Req'd	\$0.00	
Storm Drain		LS	All Req'd	\$0.00	
Waterline Relocate		Ls	All Req'd	\$0.00	
Sewerline Relocate		LF	\$150.00	\$0.00	
Overhead Electric Relocate		LS	All Req'd	\$0.00	
Preliminary Design (Phase 2)		Ls	All Req'd	\$1,545,000.00	Includes ICAP (4.79\%)
Right-of-Way (Phase 3)		LS	All Req'd	\$500,000.00	Includes ICAP (4.79\%)
Utilities (Phase 7)		LS	All Req'd	\$700,000.00	Includes ICAP (4.79\%)
Construction (Phase 4) Contract Administration (\%)	1.15	LS		\$19,150,000.00	Includes ICAP (4.79\%) \& Contract Admin
Contract Administration (\%)	1.15				
Project Name:					
16NR04: Richardson Highway MP 351 Interchange			Total:	\$21,895,000	Estimated Project Cost

APPENDIX G

PRELIMINARY BRIDGE PLANS

SHEAR CONNECTOR DETAIL

VIEW A-A

SHEAR KEY DETAIL

PLAN
$\xrightarrow{126 .}$

DESIGNED BY:	${ }^{\text {Dosisgeor }}$	CHECKED:	${ }^{\text {Cheocter }}$	STATE OF ALASKA	TWELVE MILE INTERCHANGE RICHARDSON HIGHWAY	BRIDGE NO. 1371
DRAWN BY:	oroter	Checked:	Dossigner	DEPARTMENT OF TRANSPORTATION and PUBLIC FACILITIES		
				BRIDGE SECTION		
QUANTITIES BY:	Designer	Checked:	Checerer	3132 Channel Drive Juneau, Alaska 99801 907-465-2975	GIRDER DETAILS	DWG. No. 8

APPENDIX H

VALUE ANALYSIS

value analysis study richardson highway MP 351 interchange

alaska department of transportation and public facilities
value analysis study
december 19-21, 2017

PAGE LEFT BLANK

Value Analysis Study
Richardson Highway MP 351 Interchange
December 19-21, 2017

TABLE OF CONTENTS

AERIAL PHOTO	ii
FORWARD	1
SECTION A: EXECUTIVE SUMMARY	2
- Summary Description of Project	3
- Project Schedule	9
- Value Study Objectives	9
- Alternatives Considered	9
- Summary of Recommendations	10
SECTION B: VALUE ANALYSIS STUDY	12
- Phase I Information	12
o Study Specifics and Objectives	13
o Attendance List	14
o Project Background	15
- Alternatives Considered	17
- Engineering Pro Forma	22
o Stakeholders	23
o Risk Model	24
o Cost Projections	26
- Phase II Creative Ideas/Force Field Analysis	27
o Alternative 1: Median Closure	28
o Alternative 2A: Interchange at Mile 351	29
o Alternative 2B: Interchange at Mile 351 - Shifted	30
o Alternative 3A: Interchange at Mile 351.75 Mainline Moves North	31
o Alternative 3B: Interchange at Mile 351.75 Frontage Moves South	32
- Phase III Evaluation Factors	33
- Phase III Choosing By Advantage	35
o Analysis	41
- Phase IV Development	42
- Phase V Recommendations	42
- Phase VI Implementation	42
SECTION C: APPENDIX	43

\bullet Value Analysis Agenda \quad A \quad A

Aerial Photo showing McKinley Village area

FOREWORD

This Value Analysis Report presents the recommendations for the Richardson Highway Interchange project at MP 351 conducted on December 19-21, 2017 in Fairbanks, Alaska.

This is to certify that the Value Analysis Study was led by the undersigned National Park Service Value Analysis Facilitator and was conducted in accordance with standard value analysis principles and guidelines.

Paul Schrooten
Value Study Facilitator

EXECUTIVE SUMMARY

The State of Alaska Department of Transportation \& Public Facilities (ADOT\&PF), in cooperation with the Federal Highway Administration (FHWA) is proposing to construct intersection improvements at the MP 351 Richardson Highway/Old Richardson Highway intersection under the Highway Safety Improvement Program (HSIP). The project is intended to reduce severe crashes at this intersection on the Interstate Highway System.

The primary purpose of this project is to reduce crashes at the intersection of Richardson Highway and Old Richardson Highway near MP 351. Currently, the project team has conducted an initial safety and operational assessment of Richardson Highway within the study area. The project team worked with a Technical Advisory Committee to identify three design concepts to meet the project purpose: median closure, interchange at the MP 351 intersection, and interchange near MP 352.

The FHWA requires that modifications to access on the Interstate system be reviewed from a corridor safety and operations standpoint. Part of this project is evaluating an interchange or other access modifications at MP 351 for impacts to the Richardson Highway with regards to future development and interchange locations. Three design concepts were developed by considering the project objectives and criteria that will be used to evaluate proposed improvements. In addition, the overall corridor context was considered to assess whether alternatives are consistent with guidelines for interchange spacing (>1 mile) as Richardson Highway is upgraded over time to a freeway with access provided only via interchanges.

Interstate Access Change Objectives:

- Support the vision of Richardson Highway in the study area to be grade-separated
- Consider the potential to provide a full interchange in the study area in the future
- Consider future access and interchange spacing on Richardson Highway within the study area
- Safety
- Transportation Operations
- Accessibility and Connectivity
- Constructability
- Maintenance
- Land Use
- Multimodal Accessibility
- Environmental Impact
- Cost

A value analysis study of the project was conducted on December 19-21, 2017 at ADOT\&PF Northern Region offices at 2720 Pickett Place, Fairbanks, AK.

Summary Description of Project

Highway 2 (Richardson Highway) runs east/west between Fairbanks and North Pole. It is a separated roadway with two lanes in both directions and a posted speed of 60 miles per hour. The existing three-leg intersection of Richardson Highway and Old Richardson Highway near milepost 351 is currently at grade with Old Richardson Highway stop-controlled. According to the Alaska Highway Safety Improvement Plan (HSIP), crash data at this intersection indicates 24 multi-vehicle crashes at this intersection from 2008 to 2012, including 8 minor injury crashes and 1 fatal crash. Overall, the intersection has experienced a crash rate 2.5 times higher than the statewide average for similar intersections. From a pure capacity standpoint, the existing interchange form is adequate to support existing development along the corridor. As a result of the intersection's crash history, this intersection has been included in the Alaska HSIP and an Interstate Access Change Request (IACR, also known as an Interchange Justification Report) has been requested.

Background Information:

The IACR will focus on the existing Richardson/Old Richardson Highway intersection and the area along the Richardson Highway corridor in proximity to this intersection. Based on conversations with FHWA and ADOT\&PF, four study intersections (shown in Figure 1) have been selected for detailed operations and safety analysis. The project study area will extend to the existing adjacent interchanges on Richardson Highway to the east and west. In addition to the intersections called out below for detailed analysis, the IACR will assess consistency with future plans along the Richardson Highway corridor.

The Richardson Highway is a four-lane divided roadway along the length of the study area. It is defined as an Interstate per ADOT\&PF functional classification. Traffic volumes along Richardson Highway in this area are approximately 15,000 per day and the speed limit is posted at 60 miles per hour. ADOT\&PF has expressed a general preference towards grade separation where possible along this portion of the Richardson Highway corridor.

The Richardson Highway and Old Richardson Highway intersection is a three leg minor approach stop-controlled intersection located approximately 10 miles east of downtown Fairbanks and 2 miles west of North Pole. At this intersection, Richardson Highway includes turn-lanes and allows U-turns. There is an acceleration lane westbound for vehicles taking a northbound left-turn from Old Richardson Highway. Old Richardson Highway is a one-lane approach. It is classified by ADOT\&PF as a major collector and the traffic volumes along its approach are approximately 2,000 per day. Old Richardson Highway continues southeast and runs roughly parallel to the railroad. The Petro Star refinery is located on Old Richardson Highway approximately 3 miles from the Richardson Highway intersection, leading to increased freight traffic at this intersection. Some carriers, however, do not permit their trucks to use this route based on safety concerns.

The Richardson Highway and Frontage Road intersection is a four leg minor approach stopcontrolled intersection located approximately 0.75 miles west of the Richardson Highway/Old Richardson Highway intersection. At this intersection, Richardson Highway includes a left-turn
lane on both approaches and a westbound right turn lane. Frontage Road includes a singlelane approach in each direction. South of Richardson Highway it is classified by ADOT\&PF as a local road and it is a private road north of Richardson Highway. The Frontage Road turns to gravel just south of Richardson Highway.

The Richardson Highway and Keeney Road intersection is a three leg minor approach stopcontrolled intersection located approximately 0.25 miles west of the Richardson Highway/Old Richardson Highway intersection. The intersection is right-in/right-out. Keeney Road is classified by ADOT\&PF as a local road and turns to gravel just south of the intersection with Richardson Highway. Keeney Road serves the residential area south of Richardson Highway and Bradly Sky-Ranch Airport, which is also accessible via Old Richardson Highway.

The Richardson Highway and Peridot Street/Finell Drive intersection is a four leg minor approach stop-controlled intersection located approximately 0.75 miles east of the Richardson Highway/Old Richardson Highway intersection. At this intersection, all approaches feature channelized right turn lanes. There are left turn lanes on Richardson Highway and acceleration lanes for northbound and southbound left-turning vehicles. Finell Drive and Peridot Street are both two lane roadways. Finnell Drive is classified by ADOT\&PF as a local road and Peridot Street is classified as a minor collector.

KITTELSON

Traffic Data:

Turning movements have been collected by ADOT\&PF at the following nearby locations:

Existing Traffic Conditions:

KIITELSSON

[^0]
2040 No Build Traffic Conditions:

CM = CRITCLL MOVEVEVT	2040 Traffic Conditions	Figure
LOS-CRITCAL MOVEVEVT LEVEL OF SERVICE	Weekday AM Peak Hour	
DEI - CRTICN MOVEVENT CONTROL DELAY VIC = CRTICN VOUME.	Fairbanks North Star Borough, Alaska	

KITTELSON

KKITTELSON

Intersection Crash Histories:

The crash histories at the study intersections were reviewed in an effort to identify potential safety issues. ADOT\&PF provided crash records for the five-year period from January 1, 2010 through December 31, 2014.

Table 1: Study Intersection Crash Summary (January 1, 2010 - December 31, 2014)

Intersection	Total Crashes	Angle	Crash Type			$\begin{gathered} \text { Head } \\ \text { On } \end{gathered}$	Crash Severity		
			$\begin{aligned} & \text { Rear } \\ & \text { End } \end{aligned}$	Sideswlpe	Single Vehicle		PDo ${ }^{1}$	Intury	Fatal
Frontage Road/Richardson\|Highway	1	0	0	0	1	0	1	0	0
Keeney Road/Richardson Hightway	1	0	1	0	0	0	1	0	0
Oid Richardson Highway/Richardson Highway	44	16	9	5	12	2	29	14	1
Peridot Street-Finell Drive/RAchardson Highway	9	2	2	1	4	0	9	0	0

[^1]
Project Schedule

Phase

Startup and Scoping
Existing Conditions Analysis
Alternative Development and Evaluation Preferred Alternative Refinement IACR Report

Date

March 2017 - June 2017 (complete)
May 2017 - September 2017 (complete)
May 2017 - October 2017 (in-process)
October 2017 - December 2017
November 2017 - February 2018

Strategic Meeting and Value Study Objectives

The general objectives of the meeting and value analysis study include:

- Arrive at an optimal design solution through a structured and reasoned analysis
- Confirm project meets functional requirements
- Ensure:
- consideration of all viable alternatives
- soundness of evaluation factors
- consideration of benefits to cost
- an independent second opinion project review
- Provide clear documentation of decision-making
- Develop confidence that best solution/best value is achieved

Alternatives Considered

- Alternative 1: Median Closure at Old Richardson Highway/Richardson Highway Intersection

The Old Richardson Highway/Richardson Highway intersection is restricted to right-in/rightout movements through a median closure. This concept is low cost and addresses the safety concern associated with northbound left-turn movements. It also does not preclude future infrastructure improvements. In the near-term, it causes out of direction travel and limits access for uses along Old Richardson Highway.

- Alternative 2A: Interchange at Old Richardson Highway/Richardson Highway (MP 351) (HSIP Project Nomination)

The eastbound mainline of Richardson Highway is elevated to eliminate its conflict with Old Richardson Highway. An at grade intersection remains between the westbound mainline of Richardson Highway and Old Richardson Highway. A full interchange could be developed in the future, as shown in the figure with dashed lines. This concept would require right-ofway acquisition to complete a frontage road system. Additionally, the Keeney Road access to Richardson Highway would be closed to accommodate the eastbound off-ramp.

- Alternative 2B: Interchange at Old Richardson Highway/Richardson Highway (MP 351) (Shifted Southwest)

As with Concept 2A, the eastbound mainline of Richardson Highway is elevated to eliminate its conflict with Old Richardson Highway while the westbound mainline remains at grade. The concept is shifted south to provide greater separation from the existing railroad. This concept would require right-of-way acquisition to the south of the existing Richardson Highway right-of-way, including the existing 12 Mile Road House and Hawk's Greenhouse, as well as additional right-of-way to complete the frontage road system. Additionally, the Keeney Road access to Richardson Highway would be closed to accommodate the eastbound off-ramp.

- Alternative 3A: Full Interchange at Frontage Road/Richardson Highway (MP 351.75) (Mainline Moves North)

A full interchange is implemented at the existing at grade intersection of Richardson Highway and Frontage Road. The Richardson Highway mainline is moved north and median width is decreased to keep all ramps within the existing available right-of-way. The existing Old Richardson Highway access to Richardson Highway is closed and a frontage road connection between Old Richardson Highway and the new interchange is created. The frontage road connection to the west may require right-of-way acquisition.

- Alternative 3B: Full Interchange at Frontage Road/Richardson Highway (MP 351.75) (Frontage Moves South)

As with Concept 3B, a full interchange is implemented at the existing at grade intersection of Richardson Highway and Frontage Road. The interchange is shifted south to maintain the current alignment of Richardson Highway and create more space between the interchange and railroad. The frontage road connecting Old Richardson Highway and the new interchange is diverted south because of lack of right-of-way along the Richardson Highway mainline. The frontage road would require right-of-way acquisition.

Summary of Recommendations

The Value Analysis team evaluated five different alternatives representing a range of appropriate solutions. The alternatives were evaluated through the Choosing by Advantage (CBA) process. Using this process, the team recommends Alternative $2 \mathrm{~A}_{2}$ which provides the greatest combination of benefits for the most reasonable cost.

The advantages of the recommended alternative over the others include the following:

- Alternative 2A provides the least delay in transportation operations within the highway corridor.
- Alternative 2A meets access requirements with the least disruption to existing connections without precluding future access north of the Richardson Highway.
- Alternative 2A involves the least disruption to existing and future land uses.
- Alternative 2A has the least change to cost in that no additional effort is required related to approved funding sources.
- Alternative 2A fewer safety conflicts than Alternative 1 and 2B but not as much as Alternative 3A and 3B.
- Alternative $2 A$ is more feasible to construct than $2 B, 3 A$, and $3 b$, but less than the very simple Alternative 1.
- Alternative $2 A$ is less maintenance than $2 B, 3 A$, and $3 b$, but more than the very simple Alternative 1.
- Alternative 2A is less impact on the environment than $2 \mathrm{~B}, 3 \mathrm{~A}$, and 3 b based on footprint, but more impact than Alternative 1.

Alternative 1 Median Closure had an excellent benefit to cost ratio in the CBA analysis due mainly to very low initial cost of construction and low life cycle cost. However, Alternative 1 is not recommended by the VA team because it creates the greatest transportation operational delays along this segment of the highway corridor and is most disruptive to accessibility and connectivity of the area. Ultimately, the VA team felt the additional cost and additional benefit of Alternative 2A outweighed the lower costs of Alternative 1. The difference between the benefit scores (342 versus 506) along with the already budgeted and approved higher capital investment and manageable life cycle costs was acceptable. Therefore, the VA team felt that the additional $\$ 15,650,000$ in initial cost and $\$ 244,480$ in life cycle costs for Alternative 2A was worth the benefit of enhanced, safer interchange over the next fifty years.

Alternative 2B had higher cost for less benefit than Alternative 2A and Alternatives 3A, and 3B all had higher costs for less benefit due to the more extensive development and a change in approved budget that was eligible for the current fund source.

Additional recommendations if it is decided to construct Alternative 2A are as follows:

- Consider integrating an automated bridge de-icing system at a cost of about \$200K (2017)
- Although not available with the current fund source, consider constructing frontage road west to the 3A/3B interchange location to improves accessibility and prepare for additional anticipated growth in the immediate area.
- Either close the Richardson Highway crossover at Peridot Street (which would require further functional analysis) or limit the crossover to east bound left turns only on to Peridot and eliminating left turns from Peridot on to the Richardson Highway; need to address this location independently in the near future.
- Update the circa 1980 Richardson Highway Corridor Study to confirm the importance and context of this project and to reaffirm other needs.
- Re-evaluate how to minimize impacts to the railroad right-of-way north of the proposed interchange, including use of retaining walls, median narrowing, etc.).
- Final design should consider future development north of the interchange.
- Consider applying high friction surface treatment to all approaches and acceleration/deceleration lanes at the proposed interchange.
- Collect and exchange crash data from both ADOT\&PF and the City of North Pole.

value analysis study

STUDY SPECIFICS AND OBJECTIVES

The VA team consisted of staff from the State of Alaska Department of Transportation and Public Facilities (ADOT\&PF) and the City of North Pole (CNP). A list of VA team participants is included on the following page.

The study team was composed of a mix of professional disciplines and individuals with experience in transportation planning, design, traffic and safety, highway and bridge engineering, operations and maintenance, municipal administration, and local emergency services. Members of the ADOT\&PF staff grounded the team with knowledge of the intricacies of managing current issues at this site. None of the team members had experience working on prior VA studies so this was a learning experience as well as a determination of project value. It should be mentioned that consideration of a value analysis and use of the Choosing by Advantage methodology was also being considered for its merits and application for other ADOT\&PF projects or program prioritization.

The specific value analysis objectives of this study included:

- Value enhancements including risk mitigation, quality/performance improvements, schedule/phasing coordination, etc.
- Improvements to the cost effectiveness of the project
- Creation of a higher level of confidence in the scope and implementation strategies for the project
- Identification of further opportunities for sustainability improvements

The team reviewed the design documents and budgetary cost estimates prepared by the project design team and the project consultant (Kittelson and Associates) as part of the workshop.

ATTENDANCE LIST

Value Study

Project: Richardson Highway MP 351 Interchange
Location: Alaska Department of Transportation and Public Facilities North Region Office (Fairbanks, AK)

PARTICIPANTS:

PHASE I - INFORMATION

Background

Highway 2 (Richardson Highway) runs east/west between Fairbanks and North Pole. It is a separated roadway with two lanes in both directions and a posted speed of 60 miles per hour. The existing three-leg intersection of Richardson Highway and Old Richardson Highway near milepost 351 is currently at grade with Old Richardson Highway stop-controlled.

Project Study Area Location

According to the Alaska Highway Safety Improvement Plan (HSIP), crash data at this intersection indicates 24 multi-vehicle crashes at this intersection from 2008 to 2012, including 8 minor injury crashes and 1 fatal crash. Overall, the intersection has experienced a crash rate 2.5 times higher than the statewide average for similar intersections. From a pure capacity standpoint, the existing interchange form is adequate to support existing development along the corridor. As a result of the intersection's crash history, this intersection has been included in the Alaska HSIP and an Interstate Access Change Request (IACR, also known as an Interchange Justification Report) has been requested.

Project Study Area Setting

Alternatives Considered

The Value Analysis Team evaluated five different alternatives for resolving safety problems at MP 351 of the Richardson Highway.

Alternative 1: Median Closure at Old Richardson Highway/Richardson Highway Intersection

The Old Richardson Highway/Richardson Highway intersection is restricted to right-in/right-out movements through a median closure. This concept is low cost and addresses the safety concern associated with northbound left-turn movements. It also does not preclude future infrastructure improvements. In the near-term, it causes out of direction travel and limits access for uses along Old Richardson Highway.

Alternative 2A: Interchange at Old Richardson Highway/Richardson Highway (MP 351) (HSIP Project Nomination)

The eastbound mainline of Richardson Highway is elevated to eliminate its conflict with Old Richardson Highway. An at grade intersection remains between the westbound mainline of Richardson Highway and Old Richardson Highway. A full interchange could be developed in the future, as shown in the figure with dashed lines. This concept would require right-of-way acquisition to complete a frontage road system. Additionally, the Keeney Road access to Richardson Highway would be closed to accommodate the eastbound off-ramp.

Alternative 2B: Interchange at Old Richardson Highway/Richardson Highway (MP 351) (Shifted Southwest)

As with Concept 2A, the eastbound mainline of Richardson Highway is elevated to eliminate its conflict with Old Richardson Highway while the westbound mainline remains at grade. The concept is shifted south to provide greater separation from the existing railroad. This concept would require right-of-way acquisition to the south of the existing Richardson Highway right-ofway, including the existing 12 Mile Road House and Hawk's Greenhouse, as well as additional right-of-way to complete the frontage road system. Additionally, the Keeney Road access to Richardson Highway would be closed to accommodate the eastbound off-ramp.

Alternative 3A: Full Interchange at Frontage Road/Richardson Highway (MP 351.75) (Mainline Moves North)

A full interchange is implemented at the existing at grade intersection of Richardson Highway and Frontage Road. The Richardson Highway mainline is moved north and median width is decreased to keep all ramps within the existing available right-of-way. The existing Old Richardson Highway access to Richardson Highway is closed and a frontage road connection between Old Richardson Highway and the new interchange is created. The frontage road connection to the west may require right-of-way acquisition.

Alternative 3B: Full Interchange at Frontage Road/Richardson Highway (MP 351.75) (Frontage Moves South)

As with Concept 3B, a full interchange is implemented at the existing at grade intersection of Richardson Highway and Frontage Road. The interchange is shifted south to maintain the current alignment of Richardson Highway and create more space between the interchange and railroad. The frontage road connecting Old Richardson Highway and the new interchange is diverted south because of lack of right-of-way along the Richardson Highway mainline. The frontage road would require right-of-way acquisition.

Engineering Pro Forma for All Alternatives

All three alternatives assume a 50 year life cycle cost.
Life cycle costs for all alternatives include annualized costs for repairing the systems assuming typical ADOT\&PF maintenance practices.

Stakeholders

In an effort to understand the context for this project, the following list of "stakeholders", or persons with an active interest in the making of project decisions or the outcome of such decisions is provided:

\#	Stakeholders	Primary Interest
1	- Motoring Public - Independent Travelers - Commuters - Local Users - Business and Commercial	- Safe Driving Experience - Unimpaired Access and Mobility
2	- Neighborhood - Residents - Business and Commercial Operators	- Preventing Loss of Revenue Due to Lack of Access - Traffic Movement - Safety
3	- Congressional Delegations - Governor and Administration - State Legislative Delegations	- Local Economy - Project Cost
4	- State Government (ADOT\&PF) - City of North Pole	- Bridge Construction - Safety Improvements - Resident Use - Local Economy
5	- Alaska Railroad	- Integrity of Rail Traffic - Separation from Highway and Interchange

RISK MODEL
Richardson Highway MP 351 Interchange

ELEMENTS	RISK AREAS	§	3	$\frac{\sum}{\bar{\nu}}$	$\xrightarrow{\text { 짖 }}$
A. MANAGEMENT, FINANCIAL \& ADMINISTRATIVE RISKS					
	Changing government regulations (bridge inspection requirement)				
	Public and political perspectives (user community concerns)				
	Budget limitations, approvals process, \& other constraints				
	Budget sequencing				
	Permitting delays				
	Agency jurisdictions and conflicts				
	Project mgt., organiz., decision-making processes, info flow				
	Labor issues				
	Other: staff workload				
B. ENVIRONMENTAL, GEOTECHNICAL RISKS					
	Inclement weather, storms, floods				
	Unanticipated hazardous waste				
	Environ. restrictions (air quality, noise, toxic mat., etc.)				
	Environmental Assessment schedule/decision				
	Contaminated soils remediation				
	Weed-free gravel acquisition				
	Groundwater remediation				
	Frozen ground construction				
	Inadequate subgrade testing				
	Unanticipated archaeological or historical findings				
	Wildlife closures (nesting/moose)				
	Wetlands				
	Backcountry zoning				
	Other: Wildlife interaction				
C. TECHNICAL RISKS					
	Systems, processes, and material				
	New, unproven systems, processes and materials				
	Other:				
D. IMPLEMENTATION RISKS 1. Design					
	Design approvals and changes by departmental management				
	Design errors and omissions (inadequate as-builts)				
	Untested and unproven design features and innovations				
	Insufficient design contingencies				
	Other:				
2. Contractor					
	Availability of qualified contractors or skills (competitive environment)				
	Construction material requirements				
	Inadequate or unclear specs for mat'ls \& workmanship				
	Labor negotiations/work stoppages				
	Operator training/certification				
	Management of subcontracts (shortage of subcontractors)				
	Low construction contingency				
	Cost impact of special contracting				
	Bidding climate				
	Other: Gas pipeline construction				
3. Change Orders					
	Design changes				
	Field changes, owner directed				
	Other: differing site conditions				
4. Equipment/Material					
	Availability:				
	Rejects, defects (items shipped)				

RISK MODEL
Richardson Highway MP 351 Interchange

ELEMENTS	RISK AREAS	$\overleftrightarrow{\text { z }}$	3		ㅍ
	Malfunctions or failures				
	Other: Haul distances				
5. Project Controls					
	Planning: scope evolution				
	Scheduling (future funding uncertainties)				
	Accuracy of Estimating (SD, DD, CD)				
	Other:				
6. Logistics, Transportation					
	Laydown areas limitations				
	Traffic congestion at site or access to site (conflicts w/ local users)				
	Transportation difficulties for construction mat'ls (deliveries)				
	Other: Contractor camp				
7. Interference and Maintenance of Services					
	Interference with other work (Other road projects)				
	Maintenance of certain essential services during const.				
	Tie-ins/cutovers with utilities				
	Other:				
8. Condition of Existing (For renovation, rehab. repair projects)					
	Condition of existing structure and material				
	Tie-ins				
	Removals or restoration				
9. Safety and Hazards During Construction					
	Safety to contractor personnel				
	Safety to owner and non-project personnel				
	Other:				
10. Process start-up and Commissioning					
	Testings and test planning and scheduling				
	Malfunctions and failures				
	Inadequate documentation and/or training				
	Adequacy of operating budget				
	Other:				

Cost Projections

Cost projections summarizing the costs associated with the five alternatives was prepared to help focus on the elements of the design. This allowed the study team to identify and evaluate the major cost components contributing to alternatives.

Alternative	Description	Cost Estimate	New Proposed Lane Feet (Frontage/Ramps)
1	Median Closure	$\$ 90,000$	0
2A	Interchange at Old Rich/Rich Hwy (Project Nomination)	$\$ 15,740,000$	0.93
	Interchange at Old Rich/Rich Hwy (Full Interchange)	$\$ 27,660,000$	0.27
2B	Interchange at Old Rich/Rich Hwy (Shifted Southwest)	$\$ 16,370,000$	1.19
Interchange at Old Rich/Rich Hwy (Shifted Southwest - Full Interchange)	$\$ 28,840,000$	1.97	
3A	Full Interchange at Frontage Road/Rich Hwy (Mainline Moves North)	$\$ 30,090,000$	2.05
3B	Full Interchange at Frontage Road/Rich Hwy (Frontage Moves South)	$\$ 29,690,000$	2.44

PHASE II - FORCE FIELD ANALYSISICREATIVITY

The value study team examined the five alternatives, evaluated the best and weakest features and developed proposals for improving the designs. The best features were identified so that they could be retained or incorporated into other alternatives. The weakest features were identified so that they could be improved. The findings are summarized on the following pages.

VALUE OPPORTUNITIES

Force Field Analysis
Richardson Highway MP 351 Interchange
ADOT\&PF Northern Region
Alternative 1: Median Closure

BEST FEATURES

1 quick to implement
2 economical for ADOT\&PF
3 improves safety
4 leaves options open for grander plan
5 lower maintenance costs
6
7
8 \qquad
$9 \longrightarrow 9$
$10 _10$
11 __ 11
$12 \longrightarrow 12$
13 ——13
14 ——14 14
15
15

IDEAS FOR VALUE ENHANCEMENT

1 doesn't preclude an overpass in the future
2 could still complete frontage roads if desired
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 \qquad

VALUE OPPORTUNITIES

Force Field Analysis
Richardson Highway MP 351 Interchange
ADOT\&PF Northern Region
Alternative 2A: Interchange at MP 351

BEST FEATURES

1 addresses safety concern
2 could still be developed into full interchange
3 comparatively less ROW impact
4 removes two at grade intersections 4
5 good level of service (LOS) 5
6 fits within available funding today 6
7 allows for safe turning by trucks 7
8 _ 8
$9 \longrightarrow 9$
$10 _{ }^{10}$
11 —11
$12 — 12$
13 _ 13
$14 _14$
$15 \ldots 15$

IDEAS FOR VALUEENHANCEMENI

1 frontage road extension possibilities
2 automatic bridge de-icer
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

WORST FEATURES

1 doesn't address at grade rail crossing
2 precludes future interchanges further west and at Peridot
3
4
5
6
7
8
9

14
15

VALUE OPPORTUNITIES

Force Field Analysis
Richardson Highway MP 351 Interchange
ADOT\&PF Northern Region
Alternative 2B: Interchange at MP 351 - Shifted West Half or Full

BEST FEATURES

1 curve flattening (horizontal)	1 takes out two businesses and houses
2 further from rail ROW	2 significant frontage road impacts
3	3 larger acquisition of private lands required
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	12
13	13
14	14
15	15

IDEAS FOR VALUE ENHANCEMENT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

WORST FEATURES

1 takes out two businesses and houses
2 significant frontage road impacts
3 larger acquisition of private lands required
4
6
7
8
10
11
12
13

15

VALUE OPPORTUNITIES

Force Field Analysis
Richardson Highway MP 351 Interchange
ADOT\&PF Northern Region
Alternative 3A: Interchange at MP 351.75 - Mainline Moves North

IDEAS FOR VALUE ENHANCEMENT

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

BEST FEATURES

1 unifies entire area between dike and highway
2 good interchange for local traffic heading to_ Fairbanks
3 additional frontage roads provides better access for commercial and trucking to west of interchange 4 encourages thoughtful economic development 5 adds desired acceleration lanes 5
6 more space between future interchanges 6
7 eliminates three (maybe four) at grade 7
intersections
8 creates opportunity for development north of 8
Richardson Highway

WORST FEATURES

1 more involvement in rail ROW
2 longer connection for locals and trucks to_ Richardson Highway
3 will bring more commercial traffic into residential_ area
4 legitimizes at grade crossing to north
5
6
7
8
-9

- 1

12
14

5
 15

VALUE OPPORTUNITIES

Force Field Analysis
Richardson Highway MP 351 Interchange
ADOT\&PF Northern Region
Alternative 3A: Interchange at MP 351.75 - Frontage Moves South

BEST FEATURES

1	11 2 2
2	3 major impact on residential properties
legitimizes at grade crossing to north	
time required to implement (restarts the project	
process)	

IDEAS FOR VALUE ENHANCEMENT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

PHASE III - EVALUATION (Part 1 - Evaluation Factors)

As the first task of the evaluation phase the team developed and discussed the factors which would be used to evaluate the alternatives.

The ADOT\&PF Objectives and Factors 1-9 shown below were established for the ADOT\&PF Interchange Access Justification Report on the HSIP: Richardson Highway MP 351 Interchange Project priority setting process and formed a framework for evaluation.

The study team defined specific project considerations and subfactors to tailor the evaluation factors to the needs of this project.

Factor 1: Enhance Safety Performance

Advantages in Protecting Public Health, Safety and Welfare
Advantages in Protecting Employee Health, Safety and Welfare

Factor 2: Enhance Transportation Operations Level of Performance

Advantages in Improving Effectiveness of Level of Service
Advantages in Improving Effectiveness of Volume to Capacity Ratio

Factor 3: Improve Access and Connectivity

Advantages in Improving Access Spacing Requirements
Advantages in Improving Local Roadway Connectivity
Advantages in Improving Access to Currently Developed Properties
Advantages in Accommodating Future Access for Undeveloped Properties

Factor 4: Improve Constructability

Advantages in Ability to Construct Improvements in Phases
Advantages in Minimizing Local Impacts During Construction

Factor 5: Improve the Efficiency and Reliability of Maintenance and Operations

Advantages in Level of Effort to Maintain
Advantages in Reliability of Improvements with Longer Anticipated Lifetimes
Factor 6: Protect Existing and Proposed Land Uses
Advantages in Minimizing Right-of-Way Impacts
Advantages in Maintaining or Enhancing Consistency with Adopted Land Use and Economic Development Plans
Advantages in Minimizing Impacts to Utilities Advantages in Minimizing Impacts to Existing Businesses/Developments

Advantages in Minimizing Impacts to the Alaska Railroad
Factor 7: Improve Multimodal Accessibility
Advantages in Enhancing Pedestrian and Bicycle Accessibility
Factor 8: Minimize Environmental Impact
Advantages in Minimizing Area of Disturbance
Factor 9: Minimize the Relative Cost of Construction
Advantages in Minimizing Cost of Construction
Advantages in Optimizing Applicable Fund Sources

PHASE III - EVALUATION (Part 2 - Choosing by Advantages)

After evaluating the best and worst features of each of the alternatives and the evaluation factors, it was determined that all five alternatives were viable.

The alternatives were further evaluated using a process called Choosing by Advantages, where decisions are based on the importance of advantages between alternatives. The evaluation involves the identification of the attributes or characteristics of each alternative relative to the evaluation criteria, a determination of the advantages for each alternative within each evaluation factor, and then the weighing of importance of each advantage.

The highest importance advantage is identified in each factor. The paramount advantage, across factors, was determined and assigned a weight of 100. Remaining advantages were rated on the same scale. Rough cost estimates (Class C-) were developed for each alternative. Recommendations are based on a balance of cost and importance.

The evaluation sheets form the basis for presenting the location alternatives. The evaluation tables present many types of information. Attributes of an alternative are shown above the dotted line in the tables. Advantages between alternatives are shown below the dotted line. An anchor statement summarizes those advantages. The advantage with the highest importance within a factor is indicated by a bolding the text in the advantage cell. The advantages are all rated on a common scale.

ANALYSIS

The study team evaluated the benefit or importance of the advantages to be realized from each alternative, as well as the initial costs and life cycle costs. The results were graphed with importance or benefit on the vertical scale and cost on the horizontal scale. The analysis was performed using initial cost and life cycle cost separately. The results are summarized on charts in the preceding pages.
The negative slope of the increment from Alternative 1 to Alternative 2A indicates moderate value for the additional capital investment. This holds true when evaluating both initial costs and for life cycle costs. The positive slope from Alternative 1 to Alternative 2A at a higher cost merits consideration for the gain in the importance of the advantages.
Alternative 1 had the highest benefit to cost ratio in the CBA analysis due mainly to very low initial cost of construction and low life cycle cost. It is likely that the estimated life cycle cost does not adequately take into account the continued maintenance and redistributed traffic volumes that could occur to the area over a 50 year lifespan under this limited improvement. Alternative 1 is not recommended by the VA team because it causes the most transportation operational delays to corridor traffic; causes the most disruption to local connectivity, as well as existing and future development; and precludes access to the north and limits access to the south. Ultimately, the additional cost and additional benefit of Alternative 2A outweighs the lower costs of Alternative 1 (see Tables 4 and 5 on the preceding pages).

Alternatives 2A provides greater benefit at an additional cost that better meets the purpose and need for the project into the foreseeable future. The VA team felt that the difference between the ratios (506 versus 342) made it well worthwhile to pursue this level of development. The VA team felt that the additional \$15,650,000 in initial cost and $\$ 244,480$ in life cycle costs for Alternative 2A was worth the benefit of improving the location to provide the best value solution over the next fifty years.

The VA team recommends Alternative 2A: Interchange at MP 351, which provides the greatest combination of benefits for reasonable cost.

Alaska Department of Transportation and Public Facilities - Northern Region

Evaluation Matrix			Alternative 1		Alternative 2A		Alternative 2B		Alternative 3A		Alternative 3B	
			Median Closure		Interchange at MP 351		Interchange at MP 351		Interchange at MP 351.75		Interchange at MP 351.75	
							Shifted West-Half or Full		Mainline Moves North		Frontage Moves South	
Factor		Weight	Importance Score	Weighted Score								
1 Safety:												
To enhance safety performance near the proximity of the intersection of Richardson Highway and Old Richardson Highway based on anticipated impact of design which is based on crash history	Attributes	- eliminates left turns and relocates turning maneuvers elsewhere (lower speed but still crossing) - improves mainline safety			- eliminates east versus north conflict for left turns - no relocation of turning elsewhere -improves mainline safety - removes at-grade intersection on Richardson Highway and eastbound intersection on a frontage road (2) and introduces new intersection on Old Richardson (1) -merging traffic directly on the mainline		eliminates east versus north conflict for left turns - ®o relocation of turning elsewhere @improves mainline safety Gremoves at-grade intersection on Richardson Highway and eastbound intersection on a frontage road (2) and increases traffic on Old Richardson - creates conflicts with driveway on frontage road - flattens 's' curve on mainline -merging traffic directly on the mainline		- eliminates east versus north conflict for left turns - relocates turning due to consolidation of access -improves mainline safety - removes 3 at-grade crossings - allows local traffic to stay on frontage road network -creates at-grade rail crossing on the interchange that might become public -separation of westbound ramp and acceleration lane onto Richardson Highway -creates option to close 4th access		- eliminates east versus north conflict for left turns - relocates turning due to consolidation of access - improves mainline safety - removes 3 at-grade crossings - allows local traffic to stay on frontage road network - creates at-grade rail crossing on the interchange that might become public - separation of westbound ramp and acceleration lane onto Richardson Highway - Creates ontion to oloce 4th access	
	Advantages		-mmediate treatment Inumber of high speed conflicts reduced from 9 to 2 ©safe alternative		- number of high speed conflicts reduced from 27 to 13 for 3 access points - less exposure to frontage -more safe alternative		- Bumber of high speed conflicts reduced from 27 to 13 for 3 access points - 巴ess exposure to frontage - not as safe alternative		-number of high speed conflicts reduced from 27 to 4 for 3 access points -more traditional look and more acceptable by public -removes more at-grade crossings - safer alternative		- number of high speed conflicts reduced from 27 to 4 for 3 access points -removes more at-grade crossings - safest alternative	
		1		70		88				93		100

2 Transportation Operations:							
(To effectively) perform at a (set) level of service and volume to capacity ratio, accommodating current and anticipated future traffic volumes	Attributes	All Worst Hour: \bullet Main LOS $=\mathrm{A}$ \bullet Badger Roundie LOS $=\mathrm{F}+(\mathrm{v} / \mathrm{c} 1.28$ to 1.36$)$ \bullet Badger EB Ramp LOS $=\mathrm{E}$ to F \bullet Old Rich LOS $=\mathrm{A}$ $\bullet 2020$ data indicates median closure will fail Badger interchange $(1.14 \mathrm{v} / \mathrm{c})$, adversely affect travel, and create additional delay at Badger		- Main LOS = A -Badger (v/c 1.28+) - Old Rich LOS = C (A for full interchange) (v/c 0.26) -majority of cars at Old Rich results in least out of distance travel	- Main LOS = A - Badger (v/c 1.28+) - Old Rich LOS = C (A for full interchange) (v/c 0.26) - majority of cars at Old Rich results in least out of distance travel	- Main LOS = A - Badger (v/c 1.28-) - Frontage Road LOS = B (v/c 0.05)	- Main LOS = A - Badger (v/c 1.28-) - Frontage Road LOS = B (v/c 0.05)
	Advantages		-most delay to corridor traffic	east delay to corridor traffic (besi)	-less delay to corridor traffic	- somewhat worse delay to corridor traffic	- somewhat better delay to corridor traffic
		1		91	86	63	

3 Accessibility and Connectivity:

To consider access spacing requirements, local roadway connectivity, access to currently developed properties, and future access for undeveloped properties in the vicinity	Attributes		- spacing - causes re-routes, but better for Main through traffic -local connectivity - re-routes traffic -current development access - is maintained - future access - no change	- spacing - meets requirements but not in "sweet spot" - local connectivity - improves connectivity for Keeney Road -current development access enhances access - future access - removes Parcel G and does not promote future access but also does not preclude	- spacing - meets requirements but not in "sweet spot" -local connectivity - improves connectivity for Keeney Road but more circuitously, accessing residential neighborhood -current development access eliminates 2 developed properties (Road House \& Greenhouse) - future access - removes Parcel H and does not promote future access but also does not preclude	- spacing - meets requirements - local connectivity - parcels west of Sandlot Court difficult to find or access, streamlined to east -current development access - same as local connectivity - future access - provides connection to north	- spacing - meets requirements - local connectivity - more difficult to find business entrances with backage system versus frontage system - current development access circuitous access to lots between Old Rich and gravel pit (north of Parcels P and M) -future access - provides connection to north
	Advantages		- meets access requirements - most disruption to local connectivity, existing and future development - precludes access to the north and limits access to the south	-meets access requirements - least disruption to existing connections - does not preclude future north access	-meets access requirements -most disruption to existing connections -most disruption to existing development -does not preclude future north access	-meets access requirements -some disruption to existing connections -enhances future north access	-meets access requirement - more disruption to existing connections -enhances future north access
		1	0	-	35	81	75
4 Constructability:							
(To consider) ability to construct the improvements in phases and (minimize) local impacts during construction; also considers feasibility and anticipated construction timeline	Attributes	-no phasing-quick construction timeline (singleseason)- no local impacts during construction		- can be phased (half to full) - single construction season - funding secure (+/- FY20) - affects businesses during construction	- can be phased (half to full) -two construction seasons -funding secure, but ROW timeline is longer (+/- FY21) -affects businesses and residential areas during construction	- should not be phased (has to be full) -two construction seasons -ten years out for construction funding (+/- FY27) -affects businesses and residential areas during construction	- should not be phased (has to be full) -two construction seasons -ten years out for construction funding (+/- FY27) -affects businesses and residential areas during construction
	Advantages			-more feasible to construct	- somewhat feasible to construct	-ess feasible to construct	- least feasible to construct
		1		50	- 32	17	0
5 Maintenance:							
(To consider lowest) operational and life cycle costs, requiring less effort and cost to maintain, as well as longer anticipated lifetimes - pavement preservation, snow removal, bridge inspection, illumination maintenance and utility costs	Attributes	-0.00 new lane miles-decreased costs from cross-over,but shifts to ther locations-no change to priority 1 areas (noramps)least maintena----------		$\cdot 1.63$ new lane miles $\cdot 1$ new bridge \bullet add 2 new priority 1 areas (ramps)	$\cdot 2.04$ new lane miles $\cdot 1$ new bridge \bullet add 2 new priority 1 areas (ramps)	- 3.33 new lane miles - 2 new bridges -add 4 new priority 1 areas (ramps) - potential new rail fee	- 2.44 new lane miles - 2 new bridges - add 4 new priority 1 areas (ramps) - potential new rail fee
	Advantages			-less maintenance	-somewhat more maintenance	-most maintenance	-more maintenance
		1	70	50	43		34
6 Land Use:							
To consider right-of-way impacts, consistency with adopted land use and economic development plans, impacts to utilities, impacts to existing businesses/developments and impacts to railroad	Attributes		$\|$-not consistent with local land use and economic development plans grow and support businesses, connect transportation system, and -no impacts to utilities, existing businesses or railroad improve safety -consistent with local land use and economic development plans -utility impacts exist -impacts to existing businesses/developments and potential impacts to railroad		- consistent with local land use and economic development plans -utility impacts exist -impacts to existing businesses/developments and potential impacts to railroad	- consistent with local land use and economic development plans -utility impacts exist - impacts to existing businesses/developments and potential impacts to railroad	- consistent with local land use and economic development plans -utility impacts exist -impacts to existing businesses/developments and potential impacts to railroad
	Advantages		- disruptive to existing and future land use	-least disruptive to existing and future land use	-most disruptive to existing and future land use	- somewhat disruptive to existing and future land use	-more disruptive to existing and future land use
		1	73	+		64	59

INITIAL COST

PHASE IV - DEVELOPMENT

The alternatives were considered sufficiently developed for design concepts. Each alternative was refined by the suggested ideas for value enhancement developed during the Creativity phase of the value study.

The team also developed a model to identify potential risks to the project and ways to mitigate those risks. Further development of risk mitigation may be necessary by the project management to implement a successful project.

PHASE V - RECOMMENDATIONSI WRAP-UP

Specific recommendations for additional value enhancement included the following items:

- Consider integrating an automated bridge de-icing system at a cost of about $\$ 200 \mathrm{~K}$ (2017)
- Although not available with the current fund source, consider constructing frontage road west to the 3A/3B interchange location to improves accessibility and prepare for additional anticipated growth in the immediate area.
- Either close the Richardson Highway crossover at Peridot Street (which would require further functional analysis) or limit the crossover to east bound left turns only on to Peridot and eliminating left turns from Peridot on to the Richardson Highway; need to address this location independently in the near future.
- Update the circa 1980 Richardson Highway Corridor Study to confirm the importance and context of this project and to reaffirm other needs.
- Re-evaluate how to minimize impacts to the railroad right-of-way north of the proposed interchange, including use of retaining walls, median narrowing, etc.).
- Final design should consider future development north of the interchange.
- Consider applying high friction surface treatment to all approaches and acceleration/deceleration lanes at the proposed interchange.
- Collect and exchange crash data from both ADOT\&PF and the City of North Pole.

PHASE VI - IMPLEMENTATION

Implementation of the value study recommendations will rest with the project team, as work progresses on the next stages. Additional value analysis studies (mini-VA's) may be performed to evaluate specific project components such as road and bridge construction, buffering from the railroad ROW, and other interchange enhancements.

APPENDICES

- A. Value Study Agenda
- B. Project Fact Sheet

Appendix A.

Value Study Agenda
Value Analysis: Richardson Highway MP 351 InterchangeAlaska Department of Transportation and Public Facilities - Northern Region

December 19-21, 2017

ADOT\&PF Northern Region Headquarters

2301 Peger Road

Fairbanks, AK 99709
Participants:
Paul Schrooten, NPS facilitator

Value Analysis Team

Erik Brunner, ADOT\&PF, team member (design)
Geoff Coon, City of North Pole, team member (fire chief/emergency medical services) Pam Golden, ADOT\&PF, team member (traffic and safety)
Randi Motsko, ADOT\&PF, team member (planning)
Dan Schacher, ADOT\&PF, team member (maintenance and operations)
Bryce Ward, City of North Pole, team member (mayor)

Tuesday, December 19, 2017

8:00a Project Meeting Purpose
Opening Remarks/Introductions
Agenda Review
Meeting Overview
8:30a Information Sharing/Gathering
Project Site Overview (Photos and Mapping)
ADOT\&PF Project Description
9:00a Planning and Design Options
Project Need
Background Information and Analysis
Introduction of Alternatives
9:30a Break
9:45a Value Analysis Phase I: Introduction/Information
Value Analysis Process Overview
Objectives of Study
Summary of Area (Physical, Land Use, Socioeconomic Setting)

11:15a	Value Analysis Phase II and III: Function/Speculation/Creativity
	Detailed Presentation of Site Alternatives and Cost Estimates
	Brainstorm other Site Alternatives
	Cost Model/Risk Model
12:30p	Lunch
2:00p	Site Visit
	Caravan to Project Site
	Tour Key Locations
	Q\&A
4:00p	Close for the day
Wednesday, December 20, 2017	
8:00a	Value Analysis Phase III: Speculation/Creativity (continued)
	Best Site Features
	Weakest Site Features
	Ideas to Enhance Alternatives
	Identify High Cost Elements for Value Enhancement
	Modify and Combine Ideas and Alternatives
9:45a	Break
10:00a	Value Analysis Phase IV: Analysis/Evaluation of Alternatives
	Review of Standards, Criteria, and Regulatory Requirements
	Evaluation of Alternatives (modified Choosing By Advantages)
	Review and Confirm Evaluation Factors and Ratings
	List Attributes
	List Advantages
11:00a	Lunch (extended midday break)
3:00p	Value Analysis Phase IV: Analysis/Evaluation of Alternatives (continued)
	Evaluation of Alternatives (modified Choosing By Advantages)
	List Attributes
	List Advantages
4:30p	Adjourn

8:30a Value Analysis Phase IV: Analysis/Evaluation of Alternatives (continued)
Evaluation of Alternatives (modified Choosing By Advantages)
Decide Importance
Determine Total Importance
Identification/Confirmation of Best Value Alternative

9:45a Break
10:00a Value Analysis Phase V: Development of Preferred Alternative
Develop/Rank Ideas for Further Development (Mini-VA's)
Aesthetics
Sustainability Enhancements
Other Value Enhancements

12:00 noon Lunch
1:30p Value Analysis Phase VI: Summary Findings/Implementation
Summary of Value Enhancement and Potential Cost Savings
Adjustments to Project Options (Funding, Planning and Design, Construction and Construction Management)
Presentation of findings/recommendations to others

Appendix B. Project Fact Sheet

Fact Sheet

HSIP: Richardson Hwy MP 351 Interchange Project Project No. NFHWY00097/0A24034

The State of Alaska Department of Transportation \& Public Facilities (DOT), in cooperation with the Federal Highway Administration (FHWA) is proposing to construct intersection improvements at the MP 351 Richardson Highway/Old Richardson Highway intersection under the Highway Safety Improvement Program (HSIP). The project is intended to reduce severe crashes at this intersection on the Interstate Highway System.

Project Study Area

Project Purpose: Reduce crashes at the intersection of Richardson Highway and Old Richardson Highway near MP 351.

Current Status: The project team has conducted an initial safety and operational assessment of Richardson Highway within the study area. The project team worked with a Technical Advisory Committee to identify three design concepts to meet the project purpose: median closure, interchange at the MP 351 intersection, and interchange near MP 352. More information on the alternatives process is provided on the back of this handout.

Schedule:

Phase	Date
Startup and Scoping	March 2017 - June 2017 (complete)
Existing Conditions Analysis	May 2017 - September 2017 (complete)
Alternative Development and Evaluation	May 2017 - October 2017 (in-process)
Preferred Alternative Refinement	October 2017 - December 2017
IACR Report	November 2017 - February 2018

Public Meeting \#2 - Early December 2017

For more information please contact:
Lauren Little, P.E., Engineering Manager
2301 Peger Road, Fairbanks, Alaska 99709
Phone: (907) 451-5371 / Email: lauren.little@alaska.gov

Fact Sheet

HSIP: Richardson Hwy MP 351 Interchange Project Project No. NFHWY00097/0A24034

Interstate Access Changes

The FHWA requires that modifications to access on the Interstate system be reviewed from a corridor safety and operations standpoint. Part of this project is evaluating an interchange or other access modifications at MP 351 for impacts to the Richardson Highway with regards to future development and interchange locations.

Alternatives Development and Evaluation

The three design concepts presented tonight were developed by considering the project objectives and criteria that will be used to evaluate proposed improvements, both provided below. In addition, the overall corridor context was considered to assess whether alternatives are consistent with guidelines for interchange spacing (>1 mile) as Richardson Highway is upgraded over time to a freeway with access provided only via interchanges. The current interchange spacing is shown on the graphic below.

Interstate Access Change Objectives:

- Support the vision of Richardson Highway in the study area to be grade-separated
- Consider the potential to provide a full interchange in the study area in the future
- Consider future access and interchange spacing on Richardson Highway within the study area

Evaluation Criteria:

- Safety
- Transportation Operations
- Accessibility and Connectivity
- Constructability
- Maintenance

APPENDIX I

PRELIMINARY ROW PLANS

STATE OF ALASKA

DEPARTMENT OF TRANSPORTATION
PUBLIC FACILITIES
RIGHT OF WAY SURVEYOR'S CERTIFICATE CERTIFY THAT I AM PROPERLY REGISTERED AND
LICENED TO PRACTICE LAND SUVVEFING IN THE STATE

 DATA AND CONTROLLED BY RECOVERED MONUMENTATIO
AND HAT ALL DIMENSIONS AND OTHER DETALS ARE AND THAT
ACCURATE.
RIGHT OF WAY MAP
OA24034/NFHWY00097
HSIP: RICHARDSON HIGHWAY MP 351 INTERCHANGE
WITHIN SECTIONS 5, AND 6, T. 2 S., R. 2 E., F.M., ALASKA

$$
\begin{array}{lll}
\overline{\text { TIMOTHY L. SPROUT }} \quad \text { LS-10769 } & \\
\end{array}
$$

CERTIFICATE OF APPROVAL BY PLATTING AUTHORITY
HEREBY CERTIFY THAT THIS RIGHT OF WAY PLAT HAS
BEEN FOUND TO COMPLY WITH THE REGULATIONS OF BEEN FOUND TO COMPLY WITH THE REGLATIONS OF
CHAPTER 17.28, FNSBC, RIGHT OF WAY ACQUIITIONS CHAPTER 17.28, FNSBC, RIGHT OF WAY ACQUIIITIONS
PLATS, OF THE FAIRBANKS NORTH STAR BOROUGH COD OF ORDINAN
APPROVED.
\qquad
Date

FAIRBANKS RECORDING DISTRICT STATE BUSINESS, NO CHARGE

PRELIMINARY

tate of alaska
department of transportation AND PUBLIC FACILITIES

CHIEF, RIGHT OF WA NORTHERN REGION

HORIZONTAL CONTROL SUMMARY
this project is located entirely within the fairbanks low distortion projection (LLP), A LOW DITIORTION PROJECTION CREATED BY THE ALASKA DEPARTMENT OF
TRNSPRTATION AND PUBLIC FCCILTIES. TRANSPORTATION AND PUBLIC FACLLTTES,
FAIREANKS LDP DEFINTION:
LINEAR UNIT: U.S. SURVEY FOOT (SFT)
DATUM: NADB3(2011)
PROJCTTOON: LAMBERT CONFORMAL CONIC, (SINGLE PARALLE

CENTRAL MERIDIAN (GRID ORIGIN)
FALSE NOTHHN: 200,000 STT
FAISE EASTMG:

恠
THE BASIS OF COORDINATES II THE NADB3(2011)(EPOCH: 2010.0000) OPUS AVERAGED
POSITION OF RECOVERED PRIMARY MONUMENT "BADEER 1990", POINT \#3.
NAD 83 LATITUDE AND LONGITUDE
LATITUDE $64^{\prime} 45^{\prime} 52.9706^{\prime \prime}$ N, LONGITUDE $147^{\circ} \cdot 22^{\prime} 33.0503^{\prime \prime} \mathrm{w}$
FAIRBANKS LDP COORDINATES (US SURVEY FEET)
N: 169044.76 FEET, $:$: 7309006.45 FEET

NOTES:

1. THE PURPOSE OF THIS PLAT IS TO ESTABLISH EXISTING RIGHT OF WAY
LIMTS AND SHOW NEW RIGH OF WAY AND OR EASEMENT INTERESTS LiMITS AND SHOW NEW RIGHT OF WAY AND OR EASEMENT INTERES
ACOURED BY ALASKA DOT\&PF FOR THIS PROUECT THROUGH DEEDS PERMITS, INTERAGENCY AGREEMENTS, AND OTHER DOCUMENTS ADJJINING
PROPERTY LNES AND PROPERTY CORNERS AS SHOWN ARE BASED ON A
 EVIDENAE MAY NEED OO BE CONAIDERED BEFORE USIN THIS DRAWING TO
ESTABLISH PROPERTY LINES AND PROPERTY CORNERS. 2. THE BASIS OF STA
THE ATTACHED TABLE.
2. THE HORIZONTAL CLOSURE FOR THIS SURVEY MEETS OR EXCEEDS 1
 ELLIPSE OF O.O21 METERS AT THE 95\% CONFIDENCE LEVEL WAS
OBERERED FOR THE STATIC
MEETS OPS
EXCEDS MEETS OR EXCEEDS 1 PART IN 637,051
3. COORDINATES, STATIONS, AND OFFSETS LISTED IN THE RECOVERED DIMENSIONS, STATIONS AND OFFSETS AS SHOWN ON THE PLAN SHEETS. REFLECT ADJUSTED POSITIONS. ADJUSTED POSITIONS ARE BASED ON AN EVALUATION OF THE CONTROLLING EVIDENCE AND SENI
VARY FROM THE POSTITO OF THE PHYSICAL EVIDENCE.
4. THE RIGHT OF WAY FOR THIS PORTION OF THE RRCHARDSON HIGHWAY
A 300 FOOT RIGHT OF WAY AS SHOWN ON THE ROW MAP FO
(OLD RICHARDSON HIGHWAY IS PER THE ROY FOR THIS PORTION OO TOR DOT PROJECT IM-OOO2(127)/ 61077 RECORDED AS PLAT \#2010 119 , FAIRRAKKS

ALASKA DEED.

OINTS OUTSIDE OF PLAN VEW

MONUMENT TABLE			
POINT NO.	NORTHING	EASTING	DESCRIPTION
1	171650.81	719543.12	PRIM MON FND PI 6
3	169044.76	730906.45	PRIM MON FND BADGER 1990
7822	168211.01	730863.63	MON IN CASE FND 5/4/8/9 T2S R2E RESET 1988
7823	168212.45	730693.73	PRIM Mon FND C1 L3 S9073 T2S R2E 1987 blM RR
7824	168074.61	730863.25	PRIM MON FND S59073 Row/C2L3/C1L4/58/59 1987 bLM RR
7825	169531.59	730837.60	PRIM MON FND PARCEL I/33FT To SL $705-\mathrm{S} 1993$
7826	169531.39	730903.24	REBar fnd
7827	170851.53	730910.76	Rebar fnd
7828	170851.83	730843.80	REBAR FND
7830	168247.58	725582.77	PRIM MON FND 6/5/7/8 T2S R2E 603-S KaLEN 2009
7839	169532.11	725423.48	Rebar cap fnd row/L1A 6484-S 2001
7840	169531.20	725548.00	REBAR FND
841	169383.18	725547.71	REBAR CAP FND L1A/L1B/ROW 6484-S 2001
7842	169216.26	725546.97	Rebar cap fnd L1B/ROW 6484-S 2001
7859	169324.00	730795.70	Rebar cap fnd $1705-\mathrm{S}$
7860	169398.79	730208.88	REBAR CAP FND 1A/1
7861	169403.07	730091.52	Rebar cap fnd PC A
7862	169536.59	730210.14	PRIM MON FND 1A/2/1 705-S 1993
7865	169415.24	729549.49	PRIM MON FND QUINNEL SUB 2ND 705-S 2006

"OLD RICH CONNECTION"						
ALIGNMENT POINTS						
POINT NO.	NORTHING	EASTING	ELEVATION	DESCRIPTION	STATION	OFFSET
100	169870.07	725443.33	0.00	START		T
101	169866.89	725818.22	0.00	PC		T
102	169841.32	726012.17	0.00	PT		T
103	169634.76	726809.08	0.00	PC		T
104	169609.18	727005.30	0.00	PT		T
105	169607.08	727377.06	0.00	END		T

[^0]: KaASSOCIATES

[^1]: KITTELSON
 \&ASSOCIATES

